Publications
Journal Publications
- L. Yang, R.M. Radway, Y.-H. Chen, T.F. Wu, H. Liu, E. Ansari, V. Chandra, S. Mitra, E. Beigné, “Three-Dimensional Stacked Neural Network Accelerator Architectures for AR/VR Applications,” in IEEE Micro, vol. 42, no. 6, pp. 116-124, 1 Nov.-Dec. 2022.
- Equally Contributing†: K. Prabhu†, A. Gural†, Z. F. Khan†, R.M. Radway†, M. Giordano, K. Koul, R. Doshi, J.W. Kustin, T. Liu, M.-F. Chang, G. Lallement, B. Murmann, S. Mitra, P. Raina., “CHIMERA: A 0.92 TOPS, 2.2 TOPS/W Edge AI Accelerator with 2Mbyte On-Chip Foundry Resistive RAM for Efficient Training and Inference,” in IEEE Journal of Solid-State Circuits (JSSC), vol. 57., no. 4, pp. 1013-1026, April 2022.
- B.Q. Le, A. Levy, T.F. Wu, R.M. Radway, E.R. Hsieh, X. Zheng, M. Nelson, P. Raina, H.-S.P. Wong, S. Wong, S. Mitra, “RADAR: A Fast and Energy-Efficient Programming Technique for Multiple Bits-Per-Cell RRAM Arrays,” in IEEE Transactions on Electron Devices, vol. 68, no. 9, pp. 4397-4403, July 2021.
- E.R. Hsieh, X. Zheng, B. Q. Le, Y. C. R.M. Radway, M. Nelson, H.-S.P. Wong, S. Mitra and S. Wong, “Four-Bits-Per-Memory One-Transistor-and-Eight-Resistive-Random-Access-Memory (1T8R) Array,” in IEEE Electron Device Letters, vol. 42, no. 3, pp. 335-338, March 2021.
- R.M. Radway, A. Bartolo, P.C. Jolly, Z.F. Khan, B.Q. Le, P. Tandon, T.F. Wu, Y. Xin, E. Vianello, P. Vivet, E. Nowak, H.-S.P. Wong, M.M.S. Aly, E. Beigne, M. Wootters, S. Mitra, “Illusion of large on-chip memory by networked computing chips for neural network inference,” in Nature Electronics, 4, 71-80 (2021).
Conference Publications and Abstracts
- T. Srimani, A. Bechdolt, S. Choi, C. Gilardi, A. Kasperovich, S. Li, Q. Lin, M. Malakoutian, P. McEwen, R.M. Radway, D. Rich, A.C. Yu, S. Fuller, S. Achour, S. Chowdhury, H.-S.P. Wong, M.M. Shulaker, S. Mitra, “N3XT 3D Technology Foundations and Their Lab-to-Fab: Omni 3D Logic, Logic+Memory Ultra-Dense 3D, 3D Thermal Scaffolding,” 2023 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2023.
- A. Wei, A. Levy, P.(L.) Yi, R.M. Radway, P. Raina, S. Mitra, S. Achour, “PBA: Percentile-Based Level Allocation for Multiple-Bits-Per-Cell RRAM,” 2023 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Francisco, CA, USA, 2023.
- D. Rich, A. Kasperovich, M. Malakoutian, R. M. Radway, S. Hagiwara, T. Yoshikawa, S. Chowdhury, S. Mitra, “Thermal Scaffolding for Ultra-Dense 3D Integrated Circuits,” 2023 60th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 2023, pp. 1-6.
- Equally Contributing†: T. Srimani†, A.C. Yu†, R.M. Radway†, D.T. Rich, M. Nelson, S. Wong, D. Murphy, S. Fuller, G. Hills, S. Mitra, M.M. Shulaker, “Foundry Monolithic 3D BEOL Transistor + Memory Stack: Iso-performance and Iso-footprint BEOL Carbon Nanotube FET+RRAM vs. FEOL Silicon FET+RRAM,” 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Kyoto, Japan, 2023, pp. 1-2.
- Equally Contributing†: T. Srimani†, R.M. Radway†, J. Kim^, K. Prabhu, D. Rich, C. Gilardi, P. Raina, M. Shulaker, S.K. Lim, S. Mitra, “Ultra-Dense 3D Physical Design Unlocks New Architectural Design Points with Large Benefits,” 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE), Antwerp, Belgium, 2023, pp. 1-6.
- L.R. Upton, G. Lallement, M. D Scott, J. Taylor, R.M. Radway, D. Rich, M. Nelson, S. Mitra, B. Murmann., “Testbench on a Chip: A Yield Test Vehicle for Resistive Memory Devices,” 2023 24th International Symposium on Quality Electronic Design (ISQED), San Francisco, CA, USA, 2023, pp. 1-7.
- R.M. Radway, K. Sethi, W.-C. Chen, J. Kwon, S. Liu, T.F. Wu, E. Beigne, M.M. Shulaker, H.-S.P. Wong, S. Mitra, “The Future of Hardware Technologies for Computing: N3XT 3D MOSIAC, Illusion Scaleup, Co-Design (Invited),” IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, Dec. 2021.
- Circuits Best Student Paper Award – Equally Contributing†: M. Giordano†,K. Prabhu†, K. Koul†, R.M. Radway†, A. Gural†, R. Doshi†, Z.F. Khan, J.W. Kustin, T. Liu, G.B. Lopes, V. Turbiner, W.-S. Khwa, Y.-D. Chih, M.-F. Chang, G. Lallement†, B. Murmann, S. Mitra, P. Raina, “CHIMERA: A 0.92 TOPS, 2.2 TOPS/W Edge AI Accelerator with 2Mbyte On-Chip Foundry Resistive RAM for Efficient Training and Inference,” Symposium on VLSI Circuits, pg. 1-2, June 2021.
- E.R. Hsieh, M. Giordano, B. Hodson, A. Levy, S.K. Osekowsky, R.M. Radway, Y.C. Shih, W. Wan, T.F. Wu, X. Zheng, M. Nelson, B.Q. Le, H.-S.P. Wong, S. Mitra and S. Wong, “High-Density Multiple Bits-per-Cell 1T4R RRAM Array with Gradual SET/RESET and its Effectiveness for Deep Learning,” IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, Dec. 2019.
- T.F. Wu, B.Q. Le, R.M. Radway, A. Bartolo, W. Hwang, S. Jeong, H. Li, P. Tandon, E. Vianello, P. Vivet, E. Nowak, M.K. Wootters, H.-S.P. Wong, M.M.S. Aly, E. Beigne, S. Mitra, “A 43pJ/Cycle Non-Volatile Microcontroller with 4.7μs Shutdown/Wake-up Integrating 2.3-bit/Cell Resistive RAM and Resilience Techniques,” 2019 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2019, pp. 226-228.
- R.M. Radway, K.R. Bagnall, E.N. Wang, T. Palacios. “Near Junction Thermal Management of GaN-on-SiC HEMTs via Wafer Bonding,” 2016 International Workshop on Nitride Semiconductors (IWN), Orlando, FL, USA, 2016, pp. 218.
Presentations & Posters
- R.M. Radway, T. Srimani, “New Iso-performance Foundry Monolithic 3D Transistor+Memory Unlocks Large Benefits vs. Conventional Silicon Transistor+Memory within the Same Footprint”, Stanford SystemX Fall Conference, Stanford, CA, November 2023.
- R.M. Radway, “MINOTAUR Illusion: Transformer Edge Inference and Training that Scale Across Single- and Multi-Chip Systems”, Stanford SystemX Fall Conference, Stanford, CA, November 2023.
- R.M. Radway, S. Mitra, R. Howe, “NanoSystems for Abundant Data Computing”, Samsung-Stanford Research Initiative Workshop, Stanford, CA, September 2023.
- R.M. Radway, K. Prabhu, S. Mitra, P. Raina, “MINOTAUR: Transformer Edge Inference and Training that Scale Across Single- and Multi-Chip Systems”, TSMC Corporate Research Seminar Series, Virtual, May 2023.
- R.M. Radway, C. Gilardi, T. Srimani, “Ultra-Dense 3D Physical Design Unlock New Architectural Design Points with Large Benefits”, SLAC Nano/Micro Workshop, Stanford, CA, May 2023.
- R.M. Radway, M. Giordano, “CHIMERA: A 0.92 TOPS, 2.2 TOPS/W Edge AI Accelerator with 2 MByte On-Chip Foundry Resistive RAM for Efficient Training and Inference”, Samsung Metaverse Workshop, San Jose, CA, April 2023.
- R.M. Radway, T. Srimani, “Foundry Monolithic 3D Technology Enables New Architectural Design Points with Large Benefits”, Stanford SystemX Fall Conference, Stanford, CA, November 2022.
- R.M. Radway, F. Peddinghaus, A. Symons, “Emulating Illusion Scaleup of 3D MOSAICs”, Robust Systems Group Seminar, Stanford, CA, November 2022.
- R.M. Radway, S. Mitra, “Illusion and Illusion Scaleup for 3D MOSAIC”, ACCESS Seminar Series, Virtual, June 2022.
- R.M. Radway, M. Giordano, “CHIMERA: A 0.92 TOPS, 2.2 TOPS/W Edge AI Accelerator with 2 MByte On-Chip Foundry Resistive RAM for Efficient Training and Inference”, Stanford System X Fall Conference, Virtual, November 2021.
- R.M. Radway, Y.-N. Wang, “The Future of Hardware Technologies for Computing: N3XT 3D MOSAIC and Illusion Scaleup,” Robust Systems Group Seminar, Stanford, CA, November, 2021.
- S. Mitra, R.M. Radway, “21st-Century NanoSystems for Abundant-Data Computing”, ACESS Seminar Series, Virtual, June 2021.
- R.M. Radway, “Illusion of Large On-Chip Memory for Neural Network Inference”, SystemX Fall Conference, Stanford, CA, November 2020.
- R.M. Radway, “Illusion of Large On-Chip Memory for Neural Network Inference”, Robust Systems Group Seminar, Stanford, CA, November 2020.
- R.M. Radway, “Illusion of Large On-Chip Memory for Neural Network Inference”, TSMC, Hsinchu, Taiwan, February 2020.
- R.M. Radway, “Creating the Illusion of Large On-Chip Memory”, Robust And Testable Systems Seminar, Stanford, CA, January 2020.
- R.M. Radway, “Illusion of Large On-Chip Memory for Neural Network Inference”, Xilinx, San Jose, CA, November 2019.
- R.M. Radway, “N3XT Heterogenous Integration: From Lab to Fab”, Stanford SystemX Fall Conference, Stanford, CA, November 2019.
- R.M. Radway, “Abundant Data Computing: The N3XT 1,000x”, Google, Mountain View, CA, October 2019.
- R.M. Radway, S. Mitra “RRAM Integrated on Silicon CMOS for AI Applications”, Emerging Memory and Artificial Intelligence Workshop, Stanford, CA, August 2019.
- R.M. Radway, A. Bartolo “Abundant Data Computing: The N3XT 1,000x”, ARM, San Jose, CA, May 2019.
- T.F. Wu, B.Q. Le, R.M. Radway, et al. “A 43pJ/Cycle Non-Volatile Microcontroller with 4.7μs Shutdown/Wake-up Integrating 2.3-bit/Cell Resistive RAM and Resilience Techniques,” Facebook, Menlo Park, CA, April 2018.
- R.M. Radway and M. Lee, “Compute Immersed in Memory: Analytical Performance Models for Multi-Chip Nanosystems”, Robust and Testable Systems Seminar, Stanford, CA, November 2018.
- R.M. Radway “Fast Algorithms for Synapse Detection,” SuperUROP Final Presentations, MIT, Cambridge, MA, Apr 2015.
- R.M. Radway “Fast Algorithms for Automated Synapse Detection,” SuperUROP Poster Session, MIT, Cambridge, MA, Dec 2014.
Book Chapters
- D. Rich, A. Bartolo, C. Gilardo, B.Q. Le, H. Li, R. Park, R. M. Radway, M.M.S. Aly, H.-S.P. Wong, S. Mitra, “Heterogeneous 3D Nano-systems: The N3XT Approach?”. In: Murmann B., Hoefflinger B. (eds) NANO-CHIPS 2030, Springer 2020.
Master’s Thesis
- R.M. Radway, “Near junction thermal management of GaN HEMTs via wafer bonding,” Master’s thesis, Massachusetts Institute of Technology, 2017, https://dspace.mit.edu/handle/1721.1/113116.